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Introduction: 

 Cancer is one of the common diseases that leads to death in many places due 

to metastasis. Cancer cells are abnormal cells that grow and divide uncontrollably, 

invading surrounding tissues and sometimes spreading to all of the body. There are 

many types of cancer including breast, ovarian, liver, cervical and so on. The 

mutation and environmental factors like smoking are related to all cancers. The 

developed countries are more affected than developing countries in this disease.   

The most common among women is breast cancer (Xia et al., 2022). Breast 

cancer can lead to a high rate of death due to mutations in genes or other factors 

(Mahdavi et al., 2019; Vatankhah et al., 2023; Buist et al., 2018; Hu et al., 2022). 

This cancer is related to the same mutation of genes that leads to ovarian cancer (Hu 

et al., 2022). Cervical cancer is more common in developing countries than in 

developed countries against other types (Zhang et al., 2020; Prabhu M et al., 2016). 

Cancer Therapy by chemicals is more dangerous as it affects normal cells like cancer 

cells which leads to a high rate of death. Scientists are interested in diagnosing and 

treating this disease without side effects so they are heading towards 

nanotechnology. 

 Nowadays, the whole world is heading towards nanotechnology. CQDs are 

used as nanoparticles in diagnosis and target treatment. CQDs can penetrate cancer 

cells easily. Cancer can be diagnosed early by biopsy, computerized tomography 

scan (CT), magnetic resonance image (MRI), endoscopy and x-rays. However, these 

tools lead to high costs, lack of awareness and unnecessary treatment. The 

conventional cancer treatments are surgery, chemotherapy and radiotherapy but 

there are side effects. There is a need for non-invasive and reliable treatment. CQDs 
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were used to detect cancer cells by imaging and therapy. So, Nanotechnology has an 

efficient role in cancer theranostics.  

1. Carbon Quantum Dots (CQDs) 

1.1 Properties and usage: - 

In recent years, Nanotechnology has been used to fight many diseases. Carbon 

quantum dots, in their nanoscale below 10 nm, are used in many fields, including 

cell imagining (Shi et al., 2019), drug delivery (Su et al.,2020), and targeting tumor 

cells (Fig. 1). They are used in cancer therapy due to their properties like 

biocompatibility, tinny molecules, non-toxicity, and fluorescence. CQDs are 

synthesised from natural, eco-friendly precursors (Naik et al.,2022). 

1.2 The precursors for synthesis: - 

These precursors are biomolecules or medicinal plants (Fig. 2). The 

biomolecule precursors are proteins and amino acids that are biocompatible and 

abundant including albumin like bovine serum albumin with formic acid to produce 

nitrogen-doped CQDs with less toxicity and high fluorescence (Tan et al.,2015), 

carbohydrates like glucose and biomass that contains lipids (Qiao et al., 2018 and 

Gusain et al., 2021), nucleic acid by linking between the two strands of DNA to 

form DNA-CQDs that lead to carbonization, dehydration, condensation, and 

polymerisation. The cytosine base in DNA is used to synthesise CQDs by heat at 

160℃. These CQDs were used in imaging cells and sensing due to their 

photostability, biocompatibility, and wide-range pH (Luo et al.,2018). 
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Figure 1: CQDs in cancer diagnosis and treatment. (Naik et al.,2021) 

In the last studies, medicinal plant-based CQDs have drawn attention (Naik 

et al.,2021) due to their medicinal properties, such as anticancer properties, which 

make them useful in cancer treatment (Park et al., 2017). These CQDs are efficient 

in this field due to their photostability, high photoluminescence (PL), water 

solubility and nontoxicity (Naik et al.,2021). Some of these plants used to synthesise 

CQDs are green tea (He et al., 2021), Ginger juice (Naik et al.,2022), and walnut 

oil (Arkan et al., 2018). 
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Figure 2: The synthesis of CQDs from biomolecules and medicinal plants. (Naik et 

al.,2021) 

1. Breast Cancer 

Breast cancer has become the main reason women die (Obeagu et al., 2024).  

Although BC is an issue for global public health, China ranks first globally due to 

its large population and high cancer rate (Xia et al., 2022). BC can be determined 

by a nipple discharge, breast shape or size change, or the discovery of breast lumps 

or mastalgia, even though breast examination is essential (Heer et al., 2020). It is 

from a mutation in breast cells. It has some types, including ductal, lobular (Edward 

et al., 2021 and Obeagu et al., 2023), triple-negative breast cancer, breast Paget 

disease, inflammatory breast cancer, and soft tissue sarcoma (Jagsi et al., 2022). The 

most common cancers are ductal and lobular, which are present in location and still 

in situ or spread in adjacent tissue (Iatrakis et al., 2021). 

BC is a multifactorial disease that comes with some risk factors, including 

diet, obesity, genetics, smoking, drinking, and cosmetics that contain estrogen 
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(Mahdavi et al., 2019). Despite this, breast cancer can develop without any risks in 

women than men because of exposure to estrogen and progesterone. According to 

this, late menopause leads to BC due to exposure to estrogen and progesterone 

(Vatankhah et al., 2023). The ductal or lobular carcinoma in situ can appear again 

in women due to their personal history, which leads to increasing the risk of this 

disease (Buist et al., 2018). The increasing number of injuries by BC in close blood 

relations is related to family history (Maio et al., 2021). Mutations in BRCA genes, 

including BRCA1 & BRCA2, lead to uncontrolled growth in BCs and tumor cells. 

The presence of 1 or 2 copies of the mutated gene leads to a 50 % chance of inheriting 

in the family, and these genes can also lead to ovarian cancer (Hu et al., 2022). Early 

pregnancy decreases the rate of chance injury by BC (Garnæs et al., 2022).  

2. 1 The CQDs in targeting tumor cells: 

 Methotrexate, MTX, is a drug used as an anticancer but non-targeting for 

tumor cells. That leads to some side effects in the body (Zuber et al., 2021 and 

Poursadegh et al., 2024).  FA-CQDs with Ex sourced from BC cells were used as 

targeted MTX to avoid that (Yang et al., 2023 and Tiwari et al., 2024). Ex derived 

from cancer cells and used as a targeted drug in a range from 40 to 100 nm in size 

due to their membrane composition, bioavailability, and diminished off-target 

cytotoxicity (Gilligan et al.,2017 and Tiwari et al., 2023) and these vesicles don’t 

affect normal cells (Saw et al., 2019 and Zhu et al., 2021). There are folate receptors 

in the malignant cells (Prieto et al., 2020 and Khoshnood et al., 2023) that lead to 

using it in treating cancer cells when attached to CQDs (Sattariazar et al., 2023 and 

Zahed et al., 2024). 
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2. 2 Drug loading and cell viability 

Drug loading and cellular uptake study using CQDs, MTX-CQDs and 

Ex@MTX-CQDs in cancer cells (Fig. 3). 

 The release of MTX from Ex@MTX-CQDs at conditions pH 5 and 7.4 

indicates that 65% of MTX was released in acidic conditions like the tumor 

microenvironment, and around 10% was released in neutral environments like 

normal cells. That leads to low toxicity in normal cells and high targeting (Fig. .4 

A). 

Figure 3: The cellular uptake images of CQDs, MTX-CQDs, and Ex@MTX-CQDs. 

(Kazeminava et al., 2024) 

The MTT assay measured the cell viability in the MCF-7 cell line. The effect of 

Ex@MTX-CQDs leads to less toxicity against breast cancer than CQDs, MTX, Ex, 

or MTX-CQDs. Ex@MTX-CQDs marked cytotoxicity against the MCF-7 cell line 

(Fig. 4 B). 
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Figure 4: MTX release profile of Ex@MTX-CQDs (A) and the cell viability study 

of MCF-7 cell after incubation at various concentrations (mg/mL) of samples 48 h 

(B). (Kazeminava et al., 2024) 
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2. Ovarian Cancer 

 Ovarian cancer is a lethal disease that leads women to die at an older age 

(Feeney et al., 2020 and Siegel et al., 2020). In the 21st century, the incidence of 

ovarian cancer has decreased in Northern America and Western Europe (Siegel et 

al., 2020). Despite the decreasing incidence rate, ovarian cancer is the most 

dangerous and leads to 2-thirds of deaths because of being diagnosed at later stages 

(Aus et al., 2020). The WHO has classed ovarian cancer into five major types: 

mucinous carcinoma, endometrioid carcinoma, high-grade serous carcinoma, low-

grade carcinoma, and clear cell carcinoma due to differences in cell origin (Kobel et 

al., 2022). Women between 60 and 65 years old have the highest rate of ovarian 

cancer in developed countries (Siegel et al., 2020). The rate of ovarian cancer has 

increased because of the Western lifestyle, family size, feeding babies milk formula 

and a decrease in the rate of pregnancy (Ali et al., 2018). The survival rate has 

decreased at advanced stages like (Ⅲ, Ⅳ) (Timmermans et al., 2018) and varies 

due to different disease histotypes (Zhou et al.,2021). An earlier diagnosis of breast 

cancer leads to an earlier diagnosis of ovarian cancer (Ali et al., 2023). 

 Ovarian cancer includes epithelial tumors, germ cell tumors and sex cord 

stromal tumors that are heterogeneous histologic types. When 10-15 % of ovarian 

cancer is due to genetics, there are multiple factors because of the complex and 

heterogeneous epithelial cells (Janardhan et al., 2015). Surface epithelial cells lead 

to 90% of ovarian cancer (Ali et al., 2023). Developed countries have a higher rate 

of ovarian cancer than developing countries because of increasing life expectancy, 

decreasing fertility rate, feeding babies in milk formula, western lifestyle, and 

increased daily intake of fatty diet and dense caloric food (Rice et al., 2020). Around 

75% of ovarian cancer in older women is diagnosed after menopause (Bandera et 

al., 2016) that’s because of poor prognosis (Ali et al., 2020).  
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 Ovarian cancer affects white American women more than African American 

women (Bandera et al., 2016) because of BRCA mutations. Although BRCA1 and 

BRCA2 have the same functions in DNA repair, they affect cancer differently by 

their mutations. BRCA1 mutations are affected two to threefold compared with 

BRCA2 mutations. The injured first or second-degree relatives lead to BRCA1 & 2 

mutations that affected ovarian cancer by 84% from BRCA1 mutations and 16% 

from BRCA2 mutations (Ali et al., 2023). A recent study shows that BRCA1 

mutations are more aggressive than BRCA2 mutations because they lead to 

reprogramming in tumor cells (Bruand et al., 2021).  

3. 1 The CQDs in targeting tumor cells: 

CQDs are highly toxic to tumor cells. Copper metal is used to treat SKOV3 

cells. Cu-based nanomaterials affect cell cycle regulation more than other 

nanomaterials related to carcinogenic processes (Seong et al., 2015 and Chen et al., 

2021). 

 The CQDs/Cu2O have higher toxicity against SKOV3 cells than CQDs or 

Cu2O, and the copper has high stability (Chen et al., 2021). The green nucleus 

indicates the controlled healthy cell, the orange nucleus indicates the late stage of 

apoptosis and the necrotic cells with uniformly red nuclei (fig .5). 
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Figure 5: Fluorescence photomicrographs changes by AO/EB staining of SKOV3 

cells after treatment with CQDs/Cu2O (B), CQDs (C), or Cu2O (D) for 24 h 

compared to controls (A), respectively. Scale bar 20 μm. (Chen et al., 2021) 

The CQDs/Cu2O also have higher toxicity in cancer cells than OXA and 

ART. The IC50 of CQDs/Cu2O in SKOV3 cells is less than the IC50 of each of 

OXA and ART (WangJ et al., 2016). 

3. 2 The effect of CQDs/Cu2O: 

The effect of CQDs in SKOV3 cells was non-toxic and biocompatible (Shereema 

et al.,2015). In the MTT assay, a dependent concentration of CQDs/Cu2O led to 

cytotoxicity and the SKOV3 cells had a higher inhibition rate between other cancer 
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cell lines like (Hela, A549, HT-29, HCT116, BABL-3T3, HEK293T, J224AI) that 

indicate the CQDs/Cu2O lead to inhibit the growth of SKOV3 cells (fig. 6). 

Figure 6: Differential cytotoxicity of CQDs/Cu2O in cancer cells (HeLa, A549, HT-

29, SKOV3, HCT116) and normal cells (BABL-3T3, HEK293T, J774A1) by the 

MTT assay for 24 h. (Chen et al., 2021) 

The WST assay shows the results from the MTT assay by the same range of 

inhibitory concentration. A low concentration of the CQDs/Cu2O leads to the 

differentiation between SKOV3 cancer and other cells associated with anticancer 

drugs (WangJ et al., 2016).  
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3. Liver cancer 

Liver cirrhosis is a dangerous disease that spreads worldwide. The hepatic 

stellate cells have a role in this field and can develop cancer. It can be developed by 

the potential polarization of CAFs (cancer-associated fibroblasts), TAMs (tumor-

associated macrophages) and TECs (tumor endothelial cells) (Ma et al., 2019). 

There are two types of liver cancer (Hepatocyte cancer and Cholangiocyte cancer), 

and they lead to differences in histology and molecular features. Features of HCCs 

are vascular and stromal invasion, thick cell trabeculae, increased cell density, loss 

of the reticulin framework, and a pseudo-glandular pattern (Cogliati et al., 2023). 

The iCCA differentiates according to the affected bile duct (Vijgen et al., 2017 and 

Kendall et al., 2019). The HCC contains two phenotype classes: proliferation and 

non-proliferation (Zucman-Rossi et al., 2015 and Ally et al., 2017), and the iCCA 

includes proliferation and inflammation (Cogliati et al., 2023). The HCC has unique 

molecular and histological features in the proliferation that lead to HBV infection, 

poor differentiation, pro-proliferative pathways, a worse prognosis, and increased 

rate of TP53 mutations, and the non-proliferation leads to a better outcome and WNT 

signalling due to CTNNB1 mutations (Ally et al., 2017). iCCA is similar to HCC 

and leads to common IDH1/2 mutations and FGFR2 fusions (Sia et al., 2015 and 

Nakamura et al., 2015).  

HBV and HCV can induce immunity to promote or suppress carcinogenesis. 

HBV can inhibit the effect of T-cells on cancer cells as the Treg is highly 

immunosuppressive (Pallett et al., 2015; Tan et al., 2019 and Lim et al., 2019). 

HCV can promote cancer cells by loss of IL-2 secreting CD4+ T-helper cells and the 

presence of exhaustion markers like TIM3, PD1 and galectin 9 that secrete from 

monocytes and promote Treg cell expansion (Hofmann et al., 2021). During NASH, 

there is a crosstalk between immune cells and hepatocytes that leads to the 
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development of cancer like CD8+PD1+T that induces liver damage in preclinical 

mouse models because of metabolic stimuli and CD+IL-17A+T helper 17 cells that 

induces white adipose tissue neutrophil infiltration that mediates insulin resistance 

and fatty acid release (Gomes et al., 2016; Ma et al., 2016; Pfister et al., 2021 and 

Dudek et al., 2021). 

Cancer-associated fibroblasts (CAFs) can promote tumor cells by ligand-

receptor interactions, deposition of ECM components and release of growth factors 

and inflammatory cytokines (Sahai et al., 2020; Donne et al., 2023 and Llovet et 

al., 2023). CAFs can mediate the secretion of collagen, proteoglycans and 

fibronectins with the crosslinking enzymes that promote tumor cell growth and 

increase tissue stiffness that activates integrins, SRC family kinases, FAK and YAP-

TAZ signaling that leads to increased cancer cells by its pro-migratory and pro-

proliferative in both cancer and stromal cells (Cogliati et al., 2023). For example, 

YAP-TAZ signaling is used as an anti-apoptotic protein in cancer cells, leading to 

tumor proliferation (Stein et al., 2015 and Chang et al., 2015). 

4. 1 CQDs and Huh7 cell line:  

The CQDs were used with tryptophan and sorbitol for high stability and 

optical properties. The TC-WS-CQDs lead to cell toxicity up to a certain 

concentration, which leads to targeting tumor cells. The B -, G -, and R-WS-CQDs 

indicated the endocytosis of the TC-WS-CQDs in tumor cells after incubation. The 

nystatin and chlorpromazine incubate the CQDs to detect the location of tumor cells 

(Fig. 7). 
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Figure 7: (A) LSCM images of Huh7 cells with TC-WS-CQDs incubation for 6 h. 

(B) Huh7 cells were treated with TC-WS-CQDs alone and co-treated with 

Nystatin (30 μM) or Chlorpromazine (20 μM) for 6 h. (C) TEM assessed the 

intracellular localization of TC-WS-CQDs in Huh7 cells. Arrows indicate 

intracellular vesicles engulfing TC-WS-CQDs in the cytoplasm. (D) G-WS-CQDs 

co-localise with lysosomes as tracked by LysoTracker. (Wang et al., 2022)  
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4. 2 Treating by CQDs: 

The CQDs induce high radiation therapy, decreasing the tumour cells' weight 

but not affecting the healthy cells (Fig. 8). 

Figure 8: The effect of CQDs, I470nm and CQDs+I470nm on the size of tumor cells. 

(Wang et al., 2022) 

Figure 9: The effect of CQDs, I470nm and CQDs+I470nm on the tumor volume (mm3), 

tumor weight (g) and body weight (g). (Wang et al., 2022) 
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4. Cervical cancer 

Cervical cancer is the second most common cancer (Zhang et al., 2020) that 

leads to death (Mattiuzzi et al., 2020). This cancer has a higher rate in developing 

countries than in developed countries (Zhang et al., 2020). The low and middle-

income individuals in developing countries have a higher rate of death from this 

cancer than in wealthier countries (Prabhu et al., 2016). The percentage of infection 

rate varies according to HPV genotype (Zhang et al., 2020). Women with HPV have 

a high risk of incidence of cervical intraepithelial neoplasia (CIN) and HPV types 

(Stelzle et al., 2021 and Yuan et al., 2021). 

HPV have many genotypes, there are around 13 of these that lead to cervical 

cancer (Perkins et al., 2023). The percentage of cancer changes according to the 

genotype of HPV that is associated with alpha-9 and so on (Table. 1). The high-risk 

or oncogenic HPV types, including HPV16 and HPV18, can lead to cervical cancer 

(Cohen et al., 2019). Sexual behaviour affects the incidence of HPV. HPV can 

spread after sexual intercourse, leading to cervical intraepithelial neoplasia (CIN) 

(Zhang et al., 2020). 
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Table 1: Indicate the percentage of cancer cells according to the genotype of HPV. 

(Bedell et al., 2020) 

 Multiple sexual partners and early age at first intercourse cause a high risk of 

cervical cancer (Liu et al., 2015). Oral contraceptive pills (OC) are associated with 

cervical cancer as the increase in the use of OC leads to an increase in the risk of 

cervical cancer (Zhang et al., 2020). 

5. 1 CQDs against cervical cancer: 
  Nowadays, cervical cancer has spread among females in low and middle-

income nations (Bentivegna et al., 2016). The  World Health Organization (WHO) 

reports that cervical cancer is the fourth cancer spread among women (Alam et al., 

2022). CQDs face this cancer because of their properties, including photostability, 

low toxicity and biocompatibility (Singh et al., 2018). CQDs are synthesised from 

chlorophyll to be non-toxic and don’t negatively affect the body (Devi et al., 2019 

and Unnikrishnan et al., 2020). Chl-CQDs were used in the diagnostics and 
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therapeutics of tumor cells due to their long absorption wavelength (Wu et al., 

2021). 

5. 2 Chl-CQDs suppress the cell viability of SiHa cells: 
 MTT assay indicates that the Chl-CQDs cause inhibition in SiHa cancer and 

do not affect the normal kidney cells HEK-293. The viability of SiHa cells decreased 

by increasing the concentration of the drug. (fig. 10) 

Figure 10: The effect of Chl-CQDs on the proliferation of cervical cancer cell line. 

HEK-293 and SiHa cells were exposed to indicated concentrations of doses and the 

cell viability was assayed using MTT as a substrate by taking absorbance at 570 nm. 

(Alam et al., 2022) 

5. 3 Chl-CQDs promote morphological changes in SiHa cells: 
 Chl-CQDs lead to uneven form, cell shrinkage and separation from the surface 

in SiHa cells. CQDs also lead to SiHa cell apoptosis, which was indicated by DAPI 

staining or by using AOPI staining. CQDs show the SiHa cells died by red 
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fluorescence, and the non-died or normal cells of the kidney appear with green 

fluorescence (Fig. 11). 

Figure 11: The effect of AOPI on SiHa cell and HEK-293 cell. (Alam et al., 2022) 

 Chl-CQDs lead to the damage plasma membrane in tumor cells and don’t 

affect normal cells and that was indicated by LDH release from the plasma 

membrane (Fig. 12). 

  

Figure 12: The effect of concentration of Chl-CQDs on releasing LDH (folds). 

(Alam et al., 2022)  
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